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1 Introduction 

TimeML (Pustejovsky et al. 2005) 
(www.timeml.org) is an annotation scheme for 
markup of events, times, and their temporal rela-
tions in news articles. There has been a consider-
able amount of research activity related to this 
scheme. In this paper, we focus on the problem 
of learning temporal relations (called TLINKs) in 
TimeML.  

We draw attention to two problems found in 
earlier work by (Mani et al. 2006). The first 
problem is a bug in vector generation (duplicate 
vectors were included). The second problem is 
the fact that the evaluation scheme was some-
what unrealistic; simply evaluating on a per-
relation basis across relations drawn from all 
documents doesn’t tell us how well we’re doing 
on each document. This paper addresses these 
two problems.  

2 TimeML 

The TimeML scheme flags tensed verbs, ad-
jectives, and nominals with EVENT tags with 
various attributes, including the class of event, 
tense, grammatical aspect, polarity (negative or 
positive), any modal operators which govern the 
event being tagged, and cardinality of the event 
if it’s mentioned more than once. Likewise, time 
expressions are flagged and their values normal-
ized, based on TIMEX3, an extension of the 
ACE (2004) (tern.mitre.org) TIMEX2 annotation 
scheme.  

For temporal relations, TimeML defines a 
TLINK tag that links tagged events to other 
events and/or times. For example, in (1), a 
TLINK tag orders an instance of the event of 
entering to an instance of the drinking with the 
relation type AFTER1.  
 
(1) Max <EVENT eventID=“e1” 

class=“occurrence” tense=“past” as-

                                                
1XML tags are shown in an abbreviated form. 

pect=“none”>entered</EVENT> the room. 
He <EVENT eventID=“e2” 
class=“occurrence” tense=“past” as-
pect=“perfect”>had drunk</EVENT>a 
lot of wine.  
<TLINK eventID=“e1” relatedToEven-

tID=“e2” relType=“AFTER”/> 
 
Likewise, in (2), a TLINK tag will anchor the 

event instance of announcing to the time expres-
sion Tuesday (whose normalized value is in-
ferred from context), with the relation 
IS_INCLUDED.. 
 
 (2) The company <EVENT even-

tID=“e1” class=“reporting” 
tense=“past” aspect=“none” >an-
nounced</EVENT> the results on 
<TIMEX3 tid=“t2” type=“DATE” tempo-
ralFunction=“false” value=“1998-01-
08”>Tuesday </TIMEX3>. 
<TLINK eventID=“e1” related-

ToTimeID=“t2” 
relType=“IS_INCLUDED”/> 
 
The anchor relation is an Event-Time TLINK, 

and the order relation is an Event-Event TLINK. 
TimeML uses 14 temporal relations, which re-
duce to a disjunctive classification of 6 temporal 
relations RelTypes = {SIMULTANEOUS, IBE-
FORE, BEFORE, BEGINS, ENDS, IN-
CLUDES}. An event or time is SIMULTANE-
OUS with another event or time if they occupy 
the same time interval. An event or time IN-
CLUDES another event or time if the latter oc-
cupies a proper subinterval of the former. These 
6 relations and their inverses map one-to-one to 
12 of Allen’s 13 basic relations (Allen 1984).  

Of the 14 TLINK relations, the 6 inverse rela-
tions are redundant. In order to have a disjunc-
tive classification, SIMULTANEOUS and 
IDENTITY are collapsed, since IDENTITY is a 
subtype of SIMULTANEOUS2. DURING and 
IS_INCLUDED are collapsed since DURING is 

                                                
2Specifically, X and Y are identical if they are simul-
taneous and coreferential. 
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a subtype of IS_INCLUDED that anchors events 
to times that are durations. IBEFORE (immedi-
ately before) corresponds to Allen’s MEETS. 
Allen’s OVERLAPS relation is not represented 
in TimeML. More details can be found at 
timeml.org.  

3 Challenges 

The annotation of TimeML information is on a 
par with other challenging semantic annotation 
schemes, like Coreference,Word Sense Disam-
biguation, Rhetorical Structure Theory annota-
tion, etc., where high inter-annotator reliability is 
crucial but not always achievable without mas-
sive preprocessing to reduce the user’s workload. 
In TimeML, inter-annotator agreement for time 
expressions and events is 0.83 and 0.78 F-
measure respectively, but on TLINKs it is 0.55 
F-measure, due to the large number of event 
pairs that can be selected for comparison.  

Two corpora have been released based on 
TimeML: the TimeBank (www.timeml.org) (we 
used version 1.2.a) with 186 documents and 
64,077 words of text, and the AQUAINT Corpus 
(www.timeml.org), with 73 documents and 
38,709 words. The TimeBank was developed in 
the early stages of TimeML development, and 
was partitioned across five annotators with dif-
ferent levels of expertise. The AQUAINT Cor-
pus was developed recently, and was partitioned 
across three highly trained annotators. In our ex-
periments, we merged the two datasets to pro-
duce a single 259-document corpus, called ATC. 

Table 1 shows the number of EVENTs and 
TIMES, and the distribution of TLINK RelTypes 
in the ATC3. The majority class percentages are 
shown in parentheses. It can be seen that BE-
FORE and SIMULTANEOUS together form a 
majority of event-ordering (Event-Event) links, 
whereas most of the event anchoring (Event-
Time) links are INCLUDES.  

4 Framing the Problem 

There are several sub-problems related to in-
ferring event anchoring and event ordering. Once 
a tagger has tagged the events and times, the first 
task (A) is to link events and/or times, and the 
second task (B) is to label the links. Task A is 

                                                
3We show the counts in the vectors generated for 
TLINKs from the ATC, rather than the counts in the 
raw ATC itself. As a result of normalizations carried 
out by the vector-generation program, some TLINKs 
in the ATC are dropped. 

difficult to evaluate since, in the absence of mas-
sive preprocessing, many links are ignored by the 
human in creating the annotated corpora. In addi-
tion, a program, as a baseline, can trivially link 
all tagged events and times, getting 100% recall 
on Task A. We focus here on Task B, the label-
ing task. In the case of humans, when a TLINK 
is posited by both annotators between the same 
pairs of events or times, the inter-annotator 
agreement on the labels is a .77 F-measure.  

Thus, we can consider TLINK labeling as the 
following classification problem: given an or-
dered pair of elements X and Y, where X and Y 
are events or times which the human has related 
temporally via a TLINK, the classifier has to as-
sign a label in RelTypes. Using RelTypes instead 
of RelTypes ∪ NONE also avoids the problem of 
heavily skewing the data towards the NONE 
class.  

To construct feature vectors for machine 
learning, we took each TLINK in the corpus and 
used the given TimeML features, with the 
TLINK class being the vector’s class label. The 
vectors we used are available at timeml.org. 

For learning, we used an off-the-shelf Maxi-
mum Entropy (ME) classifier from the Condi-
tional Random Field toolkit Carafe4. 

5 Approach I: Partitioning By Instances 

5.1 Introduction 

In our earlier experiments (Mani et al., 2006), 
we took all the TLINKs in the entire ATC cor-
pus, and evaluated the ME classifier using ten-
fold cross-validation across the TLINKs, ignor-
ing which documents the TLINKs came from. 
The (Mani et al., 2006) approach compared two 
different learning strategies: (i) learning from the 
TLINKs found in the annotated documents (the 
so-called “unclosed” approach, using ME), and 
comparing against the human annotations; and 
(ii) a “closed” approach (ME-C, for Maximum 
Entropy learning with closure) that first ran tem-
poral reasoning using Sputlink (described below) 
on each document, and then learning from the 
resulting TLINKs, and comparing against closed 
human annotations. Notice that this “closed” 
classification task seems harder, since any 
TLINK, even TLINKs introduced by closure that 
relate elements (events or times) far apart in the 
document, has to be classified.  

For temporal reasoning, we used a temporal 
closure component SputLink (Verhagen 2004), 
                                                
4sourceforge.net/projects/carafe 
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that takes known temporal relations in a text and 
derives new implied relations from them, in ef-
fect making explicit what was implicit. SputLink 
was inspired by (Setzer and Gaizauskas 2000) 
and is based on Allen’s interval algebra, taking 
into account the limitations on that algebra that 

were pointed out by (Vilain et al., 1989). It is 
basically a constraint propagation algorithm that 
uses a transitivity table to model the composi-
tional behavior of all pairs of relations in a 
document. SputLink’s transitivity table is repre-
sented by 745 axioms. 

 
Relation Event-Event Event-Time 
IBEFORE 110 9 
BEGINS 142 102 
ENDS 175 161 
SIMULTANEOUS 1328 57 
INCLUDES 788 2804 (65.99%) 
BEFORE 2757 (52.01%) 1116 
TOTAL 5300 4249 

Table 1. TLINK Class Distributions in ATC Corpus (12,750 Events, 2,114 Times) 
 

 UNCLOSED (ME) CLOSED (ME-C) 
 Event-Event (5,300) Event-Time (4,249) Event-Event (13,985) Event-Time (7,664) 

Accuracy: 61.79 (52.0) 84.21 (65.4) 76.56 (54.6) 83.23 (45.2) 
Relation Prec Rec F Prec Rec F Prec Rec F Prec Rec F 
IBEFORE 50.83 28.97 36.91 0 0 0 60.01 39.33 47.52 91.00 39.12 54.73 
BEGINS 58.70 40.53 47.95 32.86 29.29 30.97 81.83 61.81 70.43 58.48 43.61 49.96 
ENDS 70.04 64.54 67.17 62.87 57.83 60.24 81.90 68.27 74.46 65.20 51.47 57.53 
SIMULTANEOUS 52.32 55.60 53.91 27.15 20.07 23.08 58.81 54.45 56.55 39.56 32.08 35.43 
INCLUDES 46.89 41.62 44.10 87.33 89.71 88.51 75.54 77.10 76.31 86.57 87.08 86.83 
BEFORE 70.17 72.72 71.42 73.00 70.35 71.65 82.02 85.71 83.82 82.50 86.06 84.24 

Table 2. Machine Learning Evaluated by Instance-level Partitioning 
 

 UNCLOSED (ME) CLOSED (ME-C) 
 Event-Event (5,300) Event-Time (4,249) Event-Event (13,985) Event-Time (7,664) 

Accuracy: 59.68 (51.7) 82.47 (65.5) 51.14 (54.1) 71.99 (51.3) 
Relation Prec Rec F Prec Rec F Prec Rec F Prec Rec F 
IBEFORE 61.02 23.87 34.31 0 0 0 42.27 12.00 18.70 0 0 0 
BEGINS 51.28 34.41 41.19 43.35 26.23 32.68 50.23 15.43 23.61 33.66 14.82 20.58 
ENDS 72.27 52.04 60.51 55.26 51.11 53.11 49.16 38.54 43.21 35.67 26.96 30.71 
SIMULTANEOUS 49.76 51.15 50.45 47.04 38.70 42.46 32.15 45.23 37.59 27.40 18.28 21.93 
INCLUDES 43.47 28.36 34.32 87.77 90.10 88.92 32.02 16.13 21.46 73.72 83.15 78.15 
BEFORE 67.09 76.80 71.62 76.30 77.75 77.02 63.90 70.23 66.91 74.29 68.94 71.51 

Table 3. Machine Learning Evaluated by Document-level Partitioning 
 

LINK GOLD CLASSIFIER CONFIDENCE CLOSURE 
placement_e5    raise_e4 SIMULTANEOUS BEFORE 0.726 (BEFORE) 
said_e7    said_e1 SIMULTANEOUS SIMULTANEOUS 0.594  
said_e8    said_e1 SIMULTANEOUS SIMULTANEOUS 0.594  
has_e29    option_e11 SIMULTANEOUS SIMULTANEOUS 0.736 (SIMULTANEOUS) 
redeem_e13    conversion_e14 BEFORE BEFORE 0.979 BEFORE 
conversion_e14    takes_e16 SIMULTANEOUS BEFORE 0.930 (BEFORE) 
said_e17    said_e1 SIMULTANEOUS SIMULTANEOUS 0.594  
fixed_e18    set_e20 SIMULTANEOUS BEFORE 0.968 BEFORE 

Table 4.  Illustration of Greedy Method 
 

5.2 Replicating Approach I 

Re-running such an evaluation, using a more 
up-to-date set of the 73 AQUAINT documents, 
produces the results shown in Table 2. In our 

learning experiments here, we use five-fold 
cross-validation (and the scores shown are aver-
ages across folds). The number of vectors for 
event-event links goes from 5,300 before closure 
to 13,985 after closure, while the number of 
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event-time links goes from 4,249 to 7,664. Table 
2 shows that the ME-C approach significantly 
outperforms ME for event-event links.   

Each of these results was significantly better 
than the majority class (shown in parentheses), 
and ME outperformed a variety of other 
classifiers, including the SMO support-vector 
machine and the naive Bayes tools in WEKA5. 
SMO performance (but not naive Bayes) was 
comparable with ME, with SMO trailing it in a 
few cases.   

With the event-time data, the ratios before clo-
sure of the two most frequent classes are 65.99% 
for INCLUDES and 26.26% for BEFORE. After 
closure, the ratios are 51.06% for INCLUDES 
and 40.86% for BEFORE. The more balanced 
ratios after closure make the problem harder. 
With the event-event data, the ratios of the three 
most frequent classes before closure are 52.01% 
for BEFORE, 25.05% for SIMULTANEOUS, 
and 14.86% for INCLUDES, but after closure, 
while we still have a similar proportion of BE-
FORE (54.58%), we now have 21.23% for IN-
CLUDES and 17.65% for SIMULTANEOUS.  

5.3 Duplicate Vectors 

Note that the number of closed vectors as well 
as the accuracy figures reported in (Mani et al., 
2006) are substantially higher, with ME-C accu-
racy of 93.1% for event-event links and 88.25% 
for event-time links.  

Apart from the differences in the data set, the 
discrepancy is due to the presence of a large 
number of duplicate vectors in their data, arising 
mainly as a result of collapsing inverse links af-
ter closure. Filtering out the duplicates, along 
with improvements to the vector generation pro-
gram, results in far fewer closed vectors, less 
skew, and a lower accuracy.  

6 Approach II: Partitioning by Docu-
ments 

A problem with the (Mani et al., 2006) evalua-
tion method is that it ignored which documents 
the vectors came from. Instead of evaluating on 
instances without regard to the document 
boundaries, we report here on a different method. 
Here the training and test documents, as opposed 
to training and test TLINK instances as earlier, 
were both partitioned by fold (into five-folds). 
The number of training (likewise, test) docu-

                                                
5sourceforge.net/projects/weka/ 

ments was approximately equal across folds. 
These new results are shown in Table 3.  

While accuracy for event-event links was 
61.79% at the instance level for unclosed data, it 
now drops slightly to 59.68%, with a similar 2-
point drop in accuracy in event-time linking. 
Much more striking, however, is the drop in the 
results from closure. Here, closure no longer 
outperforms the majority class on event-event 
links, and for both event-event and event-time 
links, accuracy is worse than unclosed.  

The poorer performance of ME-C in docu-
ment-level compared to instance-level partition-
ing can be explained as follows. In instance-level 
partitioning, even when the event-event (or 
event-time) pairs in training and test vectors are 
distinct, there can be shared context across those 
vectors when they originate from the same 
document. For example, given a chain of four 
events A, B, C, and D linked by BEFORE, if B-
C (labeled by the human) is in training and A-D 
(inferred by closure) is in test, there could still be 
overlapping features due to, say, B-C and A-D 
having the same (past) tense. Such shared con-
text is absent when the testing is on documents 
that are distinct from training documents.  

This shared context can explain the substantial 
improvement in ME-C over ME in instance-level 
partitioning; however, more analysis of the effect 
of closure on instances is clearly needed. In the 
case of event-time links, any advantages in clo-
sure accruing from shared context are likely to be 
offset by the aforementioned increased hardness 
of the problem.  

7 Approach III: Global Inference 

A fundamental problem underlying the previous 
approaches is that the classifier does not take into 
account any dependencies between TLINKs. For 
example, a classifier may label the TLINK 
<X,Y> as BEFORE (where X and Y are events 
or times). Given the pair <X,Z>, such a classifier 
has no idea if <Y,Z> has been classified as BE-
FORE, in which case, through closure, <X,Z> 
should be classified as BEFORE. This can result 
in the classifier producing an inconsistently an-
notated document.  

To address this problem, we propose a greedy 
method for ensuring global consistency. At train-
ing time a simple classifier is learned based on 
pair-wise temporal relations in the training data. 
At test time, the test instances are ranked by 
confidence and the temporal closure axioms are 
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applied in an iterative fashion starting with the 
most confident instances.  

Our approach relies on temporal closure to 
validate the TLINKs generated by the classifier 
(ME). All those TLINKs are put on a queue Q 
ordered by confidence score (where zero is the 
least confident and 1 is the most confident). The 
other data structure used is a set L of result links 
which is initially empty. The procedure consists 
of a loop in which (i) the link k with the highest 
score at or above a threshold is popped off Q and 
added to L, (ii) k is validated with respect to the 
other links in L, and (iii) k is retracted from S if 
validation fails. The procedure stops when there 
are no links at or above the confidence threshold.  

Validation of k consists of two steps: compar-
ing k to links already in L and running temporal 
closure. As a result, L will at any state be consis-
tent and contain all information that can be in-
ferred by using the closure axioms. 

To illustrate, here is an example document 
(unclosed wsj_0106) processed using ME-G 
(Maximum Entropy classifier with Greedy 
Method) with the default confidence threshold of 
0.95. 
<DOCNO> WSJ891102-0086 </DOCNO> 
<DD>11/02/89</DD> 
<TEXT> 
ROGERS COMMUNICATIONS Inc. said_e1 

it plans_e2 to raise_e4 175 million 
to 180 million Canadian dollars (US 
$148.9 million to $153.3 million) 
through a private placement_e5 of 
perpetual preferred shares. Perpet-
ual preferred shares aren’t retract-
able by the holders, the company 
said_e7. Rogers said_e8 the shares 
will be convertible_e27 into Class B 
shares, but that the company has_e29 
the option_e11 to redeem_e13 the 
shares before a conversion_e14 
takes_e16 place. A spokesman for the 
Toronto cable television and tele-
communications concern said_e17 the 
coupon rate hasn’t yet been 
fixed_e18, but will probably be 
set_e20 at around 8%. He de-
clined_e21 to discuss_e23 other 
terms of the issue. 
</TEXT> 
Table 4 shows the link, the gold standard label 

from ATC, the classifier label and its confidence, 
and the label resulting from the greedy closure at 
the confidence threshold of 0.95. We also show 
the impact of dropping the confidence threshold 
sharply to 0.6, the additional labels added in the 
latter case being shown in parentheses.  

8 Conclusion 

At the time of writing, we have finished an im-
plementation of Approach III, but have not yet 
carried out a satisfactory evaluation of it.  Note 
that for use of any of the these approaches in 
practice, it is not enough to solve Task B (the 
labeling task, the focus of this paper), but also 
Task A (the linking task). We are focused on 
both these evaluation challenges. 
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