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1. Introduction

News articles typically present a story that develops over time. Events
and times are introduced and the reader understands what the se-
quence of events is. Simple questions like “What happened after the
kidnapping?” can only be answered if information about events and the
temporal relations between events is available and a document needs to
be annotated automatically or manually to provide this information.

This article focuses on how a temporal closure component can be em-
bedded in a temporal annotation environment. Temporal closure takes
known temporal relations in a text and derives new implied relations
from them, in effect making explicit what was implicit. A temporal
closure component helps to create an annotation that is complete and
consistent.

The assumption here is that explicit temporal annotation is required
for natural language processing applications like question answering
and text summarization. Take for example the question-answering task.
We want to be able to answer questions that involve events occurring
at certain times or events happening in a certain order. As an example
consider the following fragment from a 1998 Associated Press newswire.

(1) Turkey (AP) Some 1,500 ethnic Albanians marched Sunday in
downtown Istanbul, burning Serbian flags to protest the killings of
ethnic Albanians by Serb police in southern Serb Kosovo province.
The police barred the crowd from reaching the Yugoslavian con-
sulate in downtown Istanbul, but allowed them to demonstrate on
nearby streets.

This text is easy to understand and we all know what happened and
when things happened. But what do we exactly need to know when we
answer specific questions? Take the three questions below.

(2) What happened on Sunday?

(3) Were Serbian flags burned before the killings?
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(4) Were ethnic Albanians killed during the demonstration?

The first one is the simplest. The text contains a temporal expression
Sunday and an event-denoting verb right next to it. It is not too much
of a stretch to put these two together. Question (3) is more complicated.
But if we have encoded that a pattern “doing X to protest Y” implies
that X is during Y or after Y, then we can give an answer. Question (4)
is even harder because it requires ordering of events that do not occur
in near proximity to each other, and there are no obvious markers that
give us the needed information.

Some 1,500 ethnic Albanians marched Sunday in downtown 
Istanbul, burning Serbian flags to protest the killings of ethnic 
Albanians by Serb police in southern Serb Kosovo province. 
The police barred the crowd from reaching the Yugoslavian 
consulate in downtown Istanbul, but allowed them to 
demonstrate on nearby streets.

during

after
before

Figure 1. Enriching a text with temporal information

In any case, a document can be marked up to provide the informa-
tion that we need. We can add tags to the text that mark the events
and time expressions as well as the temporal relations between them.
The text in example (1) can be marked up with temporal information
as in figure 1. The event marched is now explicitly anchored to the time
expression Sunday. In addition, the events in the pairs burning-killings
and killings-demonstrate are now ordered relative to each other. Once
all events are anchored and ordered we can effectively create a timeline
and graphically display the sequence of events in the document.

TimeML (Pustejovsky et al., 2003) is an XML-compliant annota-
tion language for temporal information. It uses a basic ontology of
expressions denoting temporally relevant entities: time expressions are
identified by the timex3 tag and events are identified by the event tag.
The ontology also includes temporal relations between events and time
expressions. The tlink tag consumes no input and encodes temporal
relations proper. One of its attributes contains the kind of temporal
relation between two events or times: some of the values allowed are
before, simultaneous, includes, and begin.

A document could be processed automatically to achieve the re-
sults in figure 1 and add the appropriate markup. The last couple
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of years have spawned significant research on event extraction (Aone
and Ramos-Santacruz, 2000), extraction of time expressions (Mani and
Wilson, 2000), and event anchoring and ordering (Filatova and Hovy,
2001; Schilder and Habel, 2001; Mani et al., 2003). This research is
promising and some components, most notably the recognition of time
expressions, are of a high quality. Nevertheless, it is too early to com-
fortably use state-of-the-art automatic generation of temporal relations
because it does not yet exhibit high enough precision and recall.1

Manual annotation needs to be a part of the total annotation effort
given the precision and recall figures for machine annotation. But man-
ual annotation comes with its own set of practical challenges. The task
is a complex one, characterized by high density, low markup speed,
hard-to-avoid inconsistencies, and low inter-annotator agreement.

The high density is due to the fact that the set of possible tem-
poral relations is essentially quadratic to the number of events and
time expressions in a document. If a document has N events and time
expressions, then there are N(N − 1)/2 possible temporal relations. A
typical document contains about 50 temporal objects, which implies
1225 possible temporal relations. Larger documents with about 150
time objects (events and time expressions) have over 10,000 relations.
An annotation that contains all temporal relations is clearly impractical
by human means alone.

Annotation of temporal relations requires more reflection than for
example annotation of part-of-speech tags and is therefore slower. Syn-
tactic tags and many semantic tags like entity tags or event tags can
be added in a strictly linear fashion. Temporal relations are different
because they require us to specify attributes of pairs of objects, and the
objects involved may not be close to each other in the text. Annotating
a mid-sized newspaper article can take up to an hour.

Experience with consistency checking tools showed that it is hard
to annotate a one-page document without introducing inconsistencies.
An inconsistency can occur because the choice for a particular tem-
poral relation often restricts choices down the road. For example, if
an annotator decides that X is before Y and Y is before Z, then the
choice of temporal relations between X and Z is constrained. But even
trained annotators are liable to introduce relations that clash with
previous choices. This is sometimes the result of vague or ambiguous
temporal relations between events, and sometimes the result of a fuzzy

1 Precision is defined as the percentage of correct answers. Recall is defined as
percentage of correct answers relative to all possible correct answers. Reported pre-
cision and recall figures range from 59% to 94%, depending on the complexity of the
temporal annotation subtask.
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interpretation of a particular relation (for example, does X includes Y
mean that X and Y may share a beginning point or not). But often
plain fatigue is to blame.

A manually annotated document is sparse in temporal information
given the high density potential. More often than not, two annotators
choose to add different temporal relations simply because the space
they can pick from is so large, as depicted in figure 2.

picked by
annotator1

picked by
annotator2

all relations

Figure 2. Two annotators marking up different temporal relations

It is unreasonable to expect that an annotator adds much more
than a hundred links in a two-page document. On average, annotators
annotate about 1-5% of all possible links and in only about 10% of the
cases two annotators chose to add temporal relations between the same
two time objects.2

The quality of an annotated document and the quality of an anno-
tation specification and its guidelines is often measured by comparing
the annotations of two or three annotators, and low inter-annotator
agreement scores are perceived by many to indicate an ill-defined an-
notation task (Hirschman et al., 1998; Setzer, 2001). The sparsity of
temporal annotation depresses inter-annotator agreement.

Another complication is that, unlike for example with part-of-speech
annotation, temporal annotations need to be compared at the semantic
level and not the syntactic level. The two pairs of temporal networks
in figure 3 should be considered pairwise identical because they convey
the same meaning, even though they do not contain the same temporal
facts.

Some way is needed to compare temporal networks in a meaningful
manner. Temporal closure can be used to map semantically identical
annotations onto syntactically identical annotations.

2 This is probably a rather pessimistic figure since it is based on a small experi-
ment with naive annotators. Trained annotators that have memorized a solid set of
annotation guidelines should choose to add the same links more often.
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Figure 3. Two pairs of identical annotations

1.1. Mixed-Initiative Annotation

So neither machine nor human can produce a high-quality annotation
that is consistent and complete. Manual temporal annotation is expen-
sive and time-consuming and clearly impractical if it is to deliver a
complete annotation. Fully automatic temporal annotation is not yet
up to the task and exhibits precision and recall figures that are not
high enough.

The solution is to let both human and computer do what they do
so well. The human can quickly see how events relate in time without
there being any single clear and explicit textual marker; the computer
can deal with large amounts of tedious data and skillfully perform sim-
ple reasoning tasks. Mixed-initiative temporal annotation is a hybrid
approach that goes some way towards meeting the practical challenges
mentioned above. It was pioneered in the Alembic Workbench (Day
et al., 1997) and includes a range of modules:

− automatic pre-processing for those tasks that have high precision,
most notably recognition of events and time expressions

− manual annotation

− a user-assisted temporal closure algorithm

− machine learning techniques

Here, we focus on the closure component. Temporal closure makes it
easier to create a consistent temporal annotation because it constrains
choices and finds inconsistencies in a set of relations added before
closure applied. In addition, temporal closure can be employed in a
user-assisted mode where the user is asked to fill in temporal relations
and the machine continues to add facts after each user-added relation.
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I will show that this approach makes it feasible to achieve a near-
complete annotation because temporal closure will derive about 95%
of the temporal relations.

In the following sections, I will first describe two annotation efforts
that used a model-theoretic approach or an explicit temporal closure
component for the purpose of annotation comparison (section 2). Sec-
tion 3 introduces SputLink, a temporal closure module intended to
be embedded in an annotation environments. In essence, SputLink is
based on a restricted interval algebra, this theoretical background is
presented in section 3.1. SputLink itself, as well as its embedding in an
annotation environment, is described in sections 3.2 and 3.3. Finally,
section 4 gives statistics from SputLink at work, including number and
kind of links added (section 4.1), inter-annotator agreement (section
4.2), and data on user-assisted closure (section 4.3).

2. Previous Approaches

Graham Katz and Fabrizio Arosio (Katz and Arosio, 2001) proposed
a simple temporal annotation language for intra-sentential precedence
and inclusion relations between verbs. Their language has labels <
and > for precedence relations and ⊆ and ⊇ for inclusion relations.
Each sentence also includes an indexical reference to the speech time
which can be temporally related to the verbs. Annotations are provided
with a model theoretic interpretation and consistency of annotations
is defined in terms of satisfiability in models. Katz and Arosio report
results from an experiment where two annotators annotated 50 complex
sentences. The annotations were syntactically identical in only 70% of
the cases, but they were semantically consistent in 85% of the cases.

Andrea Setzer and Robert Gaizauskas aimed to capture temporal in-
formation in newswire texts. To that end, they defined an annotation
language and a set of annotation guidelines called STAG: Sheffield
Temporal Annotation Guidelines (Setzer, 2001; Setzer and Gaizauskas,
2001). Events and times are connected using five temporal relations:
before, after, includes, included and simultaneous. The fifth rela-
tion, simultaneous, is rather fuzzy and means something like “roughly
at the same time”.

Setzer and Gaizauskas used a deductive closure component to get
more reliable inter-annotator agreement figures. They use a domain
E ∪ T (events and time expressions) which has three binary relations
defined on it. B, I and S are the sets of all pairs in the domain that
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are assigned the before, includes and simultaneous relations re-
spectively. Ten inference rules were derived from the formal properties
of the STAG relations: simultaneous is an equivalence relation while
before, includes and their inverses are transitive, asymmetric and
irreflexive. Three of the rules are shown below.

(5) 1. ∀x, y, z ∈ (E ∪ T ) : (x, y) ∈ S ⇒ (y, x) ∈ S

2. ∀x, y, z ∈ (E ∪ T ) : (x, y) ∈ B ∧ (y, z) ∈ B ⇒ (x, z) ∈ B

3. ∀x, y, z ∈ (E ∪ T ) : (x, y) ∈ B ∧ (y, z) ∈ S ⇒ (x, z) ∈ B

Now standard precision and recall measures can be applied to the
domain after computing the deductive closure of B, I and S. Measur-
ing the inter-annotator agreement was Setzer and Gaizauskas’ main
application for the deductive closure component, but they proceeded
to use it to increase the number of temporal facts in a text. They
introduced two stages of annotation. In the first stage, the annotator
would manually markup explicit and implicit temporal relations in the
text. In the second stage, relations are normalized and all inferences
that can be drawn are added to the set of relations. Then the system
enters a loop where the user is prompted to specify the relation between
two events and time expressions that have not yet been related. Each
time the user adds a fact, the closure component tries to add new
inferences. This loop continues till all relations are specified.

This inferencing approach is not sound due to the fuzzy nature
of the simultaneous relation. Setzer acknowledges this in her thesis
and gives an example that illustrates this, here presented in figure 4.
Event x is before event y and event y is simultaneous with event z

x y

z

time

Figure 4. An incorrect inference in Setzer’s closure algorithm

(“roughly at the same time”), yet event x is not before event z, thereby
violating rule 3. These incorrect inferences are not necessarily a prob-
lem when the closure component is used to more correctly measure
inter-annotator agreement. But if temporal closure is used to achieve
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a complete annotation then it should not be at the price of lower
precision.3

3. Implementing Temporal Closure

3.1. Intervals, Points, and Neighborhoods

Allen’s interval calculus (Allen, 1983; Allen, 1984) has been very in-
fluential in the field of temporal reasoning. Its starting point is the
acknowledgment that there are thirteen basic temporal relationships
between two intervals, as depicted in figure 5, which shows seven rela-
tions and the inverses of six of them.

Relation Symbol Inverse Example

X before Y < > x y

X meets Y m mi x y

X overlaps Y o oi
x

y

X during Y d di
x
y

X starts Y s si
x

y

X finishes Y f fi
x

y

X equal Y = =
x
y

Figure 5. The Thirteen Basic Relations

The temporal relations between intervals can be maintained in a
graph where the nodes are the intervals and the arcs are labeled by
arbitrary disjunctions over the thirteen basic relations. Allen assumes
that the network always maintains complete information about how
its intervals could be related. When a new temporal relation between
two intervals is added, all consequences are generated by computing
the transitive closure of the temporal relations. Each new fact adds
a constraint about how its two intervals could be related, which may

3 This begs the empirical question of how often false inferences are drawn. A
small number of these false hits and slightly lower precision may be acceptable as
long as there would be a significant increase in recall.
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in turn introduce new constraints between other intervals through the
transitivity rules governing the temporal relations.

Table I. The transitive behavior of basic relations

� < > d di

< < all < o m d s <

> all > > oi mi d f >

d < > d all

di < o m di fi > oi di mi si o oi d s f di si fi = di

A fragment of Allen’s 13×13 transitivity table that models the tran-
sitive behavior of all relation pairs is given in table I. The composition
operator � is used as another way to denote lookup in the transitivity
table: r1� r2 is the cell (r1, r2). If a new fact 〈i during j〉 is added, and
j is before k, then it is inferred from the table that i must be before k.
The new constraint can be a disjunction, for instance, if the arc 〈i, j〉
is labeled {<} and the arc 〈j, k〉 is labeled {d}, then the arc 〈i, k〉 can
be constrained to the set {< o m d s}. In any case, the new fact is
added to the network, possibly introducing further constraints on the
relationships between other intervals.

Allen’s constraint propagation algorithm is given in figure 6. In this
algorithm, R(i,j) is the new basic relation or set of basic relations just
added between i and j, and N(i,j) is the existing set of basic relations
between i and j. It is easy to see that the time complexity of Allen’s
algorithm is O(N3) where N is the number of intervals. Adding one
arc to the network is linear and the number of modifications that can
be made is 13 times the number of binary relations between all nodes,
which is O(N2).

A problem with the constraint propagation procedure is that while
it does not generate inconsistencies it does not detect all inconsisten-
cies in its input, that is, it is sound but not complete. The algorithm
never compares more than three arcs at a time and there are temporal
networks where each subgraph of three arcs is consistent but where
there is no consistent labeling for the whole graph, an example is given
in (Allen, 1983). The algorithm becomes exponential when complete
consistency checks are incorporated.

A tractable restricted subset of the interval algebra was proposed
by Marc Vilain, Henry Kautz and Peter van Beek (Vilain et al., 1990).
They used relations on points to restrict the 213 = 8192 different labels
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Add R(i,j):
add R(i,j) to ToDo
while notEmpty ToDo do

get next R(i,j) from ToDo
N(i,j) := R(i,j)
foreach node k do

R(k,j) := N(k,j) ∩ Constraints(N(k,i),R(i,j))
if R(k,j) ⊂ N(k,j) then

add R(k,j) to ToDo
R(i,k) := N(i,k) ∩ Constraints(R(i,j),N(j,k))
if R(i,k) ⊂ N(i,k) then

add R(i,k) to ToDo

Constraints(R1,R2):
Result := ∅
foreach r1 in R1 do

foreach r2 in R2 do
Result := Result ∪ r1 � r2

return Result

Figure 6. Allen’s Constraint Propagation Algorithm

Table II. Mapping interval relations to point
relations

X before Y x2 < y1

X starts Y x1 = y1 ∧ x2 < y2

X during Y x1 > y1 ∧ x2 < y2

X overlap Y x1 < y1 ∧ x2 > y1 ∧ x2 < y2

that interval algebra allows. Each interval can be represented as a pair
of points where one precedes the other. For example, the interval X
could be rewritten as x1 -x2, where x1 is the begin point, x2 is the
end point and x1 < x2. All basic relations can also be rewritten using
precedence and equality relations on begin and end points, as shown
for a few of the basic relations in table II.

The point algebra is defined by the four point relations between the
beginning and end of two intervals. Any basic relation between intervals
can be represented by defining the four relations R1 through R4 as
shown in figure 7. The labels R1 through R4 on the point relations are
taken from the set {< = >}, so instead of thirteen basic relations there
are now only three. An interesting table emerges when all thirteen basic
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x1 x2

y1 y2

<

<

R1 R2
R4R3

Figure 7. Decomposing an interval relation

relations from the interval algebra are ordered according to the point
relations assigned to the four relations above, see figure 8.

<

m

o

s

d

mi

fi

=

f

>

di

si

oi

x2 < y2
x2
=
y2

x2 > y2

x2  < y1

x2 = y1

x2 > y1

x1 < y1

x1 = y1

x1 > y1

x1 < y2
x1
=
y2

x1
 > 
y2

Figure 8. Interval relations and point relations

A convex relation is a relation between the four points where the
following labels are allowed: {<}, {=}, {>}, {<=}, {>=}, and {<=>}.
Convex relations map to disjunctions of interval relations, but not all
disjunctions of interval relations can be expressed by a convex relation.
For example, x2 <= y1 maps to the disjunction {< m}, but there
is no convex relation that covers the disjunction {< si >}, as can
easily be verified by inspecting figure 8. Ordering and restricting the
unlimited disjunctions of Allen this way gives us a set of 82 convex
relations. Schilder (1997) ordered these in a hierarchy based on the
subset relation.

This restricted point algebra of convex relations can be mapped
to a subset of Allen’s interval algebra by simply translating the point
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relation assignments to disjunctions of basic relations between intervals,
using figure 8. This interval algebra, with 82 rather than 213 possible
labels, has the property that detecting inconsistencies is now tractable.
Indeed, (Vilain et al., 1990) proved that Allen’s constraint propagation
algorithm is sound and complete if the reduced set of labels is adopted.

Christian Freksa (Freksa, 1992) proposes another subset of the interval
algebra. He argues that Allen does not introduce a good mechanism for
coarse temporal information because his disjunctions of basic relations
are not at all restricted. In addition, Allen’s representation and algo-
rithm become more complex when less information is available on the
arcs. Coarse temporal information is needed to properly describe indef-
inite temporal information in discourse, as exemplified in example (6)
below.4

(6) “Mary starede1 at Peter. He gavee2 her pizza back.”

Event e1 can occur before e2, it can meet e2 or it can overlap with
e2. Allen’s scheme needs the disjunction {< m o} to capture this in-
formation and requires a loop over the transitivity table to compute
how constraints propagate through the network. To more concisely
capture this kind of coarse temporal knowledge, Freksa introduced the
notion of conceptual neighborhood. Two relations between intervals
are conceptual neighbors if they can be directly transformed into one
another by deforming the intervals (that is, shortening or lengthening),
as in figure 9.

x y
x

x
y

y

before meet overlap

Figure 9. Deforming intervals

The before and meet relations are conceptual neighbors, but before
and overlap are not because the transformation is indirect via the
relation meet. The thirteen basic temporal relations can be ordered in
a network according to their conceptual neighborhood. The result is
the graph in figure 10 that looks a lot like the table with point relation
assignments in figure 8.

The lines between the relations represent the direct one-step trans-
formations of the intervals. A conceptual neighborhood is defined as a

4 This example was taken from (Schilder, 1997).
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<

m

o

=

oi
f

s
d

fi

si

>

di

mi

Figure 10. The Basic Relations in their Neighborhood

set of relations that are path-connected through conceptual neighbor
relations. For example, the set {< m o fi =} is a conceptual neighbor-
hood but {< o} is not. Note that all convex relations are conceptual
neighborhoods but that the reverse is not true. The figure above, by
the way, presents another way of defining convex relations. A convex
relation Rel has a top element r1 and a bottom element r2 such that
Rel = {r|r1 ⊆ r ⊆ r2}. So {oi =} is not a convex relation because by
the definition above f and si should also be included.

Table III. Two Neighborhoods

label mnemonic Allen point relations

tt tail to tail with fi = f x2 = y2

oc older contemporary of o fi di x1<y1 ∧ x2>y1

Freksa continues by identifying ten conceptual neighborhoods that
are the basis for coarse temporal reasoning. He selected the neighbor-
hoods in such a way that finer relations (the Allen relations) can be
expressed as conjunctions of the coarse relations. Two examples of these
neighborhoods are shown in table III. Freksa then creates the transitiv-
ity table for these ten relations and shows that using this table generates
the same inferences as Allen’s transitivity table, the difference only
being that Allen’s algorithm creates disjunctions when reasoning over
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coarse information whereas Freksa’s uses conjunctions when reasoning
over fine information. Finally, he creates a 29 × 29 table that is closed
under neighborhood-based reasonings, that is, composition of any two
of the 29 neighborhoods results in one of the 29 neighborhoods. These
29 relations are a subset of the 82 convex relations defined by (Vilain
et al., 1990) and therefore the algebra inherits the tractability of the
point algebra with convex relations.

3.2. Launching SputLink

SputLink is an implementation of Allen’s interval algebra but it re-
stricts the set of possible labels using insights from point algebra.
Rather than using {<}, {=}, {>}, {<=}, {>=}, and {<=>} as al-
lowed labels for point relations, SputLink only uses {<}, {=}, {>}, and
{<=>}. As a result, the set of possible labels is limited to 29 elements,
which are the same relations that Freksa identified. These relations
between intervals can be plotted in a hierarchy by using the subset
relation, this hierarchy is similar to, yet smaller than the hierarchy
presented in (Schilder, 1997).

Add R(i,j):
add R(i,j) to ToDo
while notEmpty ToDo do

get next R(i,j) from ToDo
N(i,j) := R(i,j)
foreach node k do

R(k,j) := N(k,j) ∩ �(N(k,i),R(i,j))
if R(k,j) ⊂ N(k,j) then

add R(k,j) to ToDo
R(i,k) := N(i,k) ∩ �(R(i,j),N(j,k))
if R(i,k) ⊂ N(i,k) then

add R(i,k) to ToDo

Figure 11. SputLink’s Constraint Propagation Algorithm

The core SputLink constraint propagation algorithm is presented in
figure 11. It is very similar to Allen’s algorithm in figure 6. The main
difference is that there is no Constraints procedure that loops over a
13 × 13 composition table of basic relations but a single lookup � in a
29 × 29 composition table of convex relations. This table can simply be
computed by applying Allen’s original algorithm to all 29 × 29 com-
binations of the restricted set of labels. Alternatively, all combinations
of interval relations can be decomposed into point relations. Assume
we have three intervals, x1 -x2, y1 - y2 and z1 - z2, and point relations
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between xi and yj and point relations between yk and zl. The algorithm
in figure 11 can be applied to this graph using the composition table in
IV and the resulting point relations between points in x1 -x2 and z1 - z2

can be mapped to interval relations and put in the composition table.

Table IV. Transitivity
table for point relations

� < = > ?

< < < ? ?

= < = > ?

> ? > > ?

? ? ? ? ?

3.2.1. Intervals and Points
Taking an interval-based approach assumes that intervals are the prim-
itives for the purpose of temporal closure over the annotation. Allen
originally claimed that even events or time expressions that look like
points-in-time can in fact be treated as very short intervals and that
interval-based reasoning was more efficient than point-based reasoning.
Antony Galton (Galton, 1990) argued that the neglect of time instants
results in a formalism that is too crude for representing facts about
continuous change. To amend that, points and intervals need to be
treated on equal footing.

SputLink as described above has no concept of points but the 29× 29
composition table can easily be expanded to allow for temporal rela-
tions between points and intervals and relations between points. For
example, to take care of point-interval relations we can take the square
in figure 7 with four relations between points and reduce it to a triangle
with three point relations. We can then create eight convex relations
between point and interval: five basic ones (before, starts, in, ends,
and after), and three disjunctions ({before,starts,in}, for when the
point comes before the end point of the interval, {in,ends,after},
for when the point comes after the begin point of the interval, and
{before,starts,in,ends,after}, the totally underspecified relation).
The 8 × 8 composition table can be filled in the same way as the 29× 29
composition table for interval-interval relations.

3.2.2. Intervals, Events and Times
Note that to initialize the algorithm we need to map an annotation
graph with TimeML objects into a graph with intervals and relations
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between interval (for the moment ignoring the points-in-time). This
amounts to reducing events to intervals. In other words, we abstract
away from all properties of events (and times) and view them as time
intervals only for the sake of the algorithm. All TimeML relations are
mapped onto Allen relations, as given in the table V.

Table V. Mapping TimeML relations to basic relations

TimeML relation Allen relation relations between points

A before B < a2 < b1

A after B > a1 < b2

A ibefore B m a2 = b1

A iafter B mi b2 = a1

A includes B di a1 < b1 ∧ a2 > b2

A is included B d a1 > b1 ∧ a2 < b2

A identity B = a1 = b1 ∧ a2 = b2

A simultaneous B

A holds B

A held by B

A begins B s a1 = b1 ∧ a2 < b2

A begun by B si a1 = b1 ∧ a2 > b2

A ends B f a1 > b1 ∧ a2 = b2

A ended by B fi b1 > a1 ∧ a2 = b2

Note that there is no need for a mapping to the basic relations o
and oi since TimeML has no overlap relation. Another thing to realize
is that TimeML relations are not intended to be as precise as Allen
relations. There is a certain amount of fuzziness built into some of the
relations, although this fuzziness is not even close to the fuzziness of
STAG’s simultaneous relation. As a result, a TimeML closure engine
that uses the precise relations behind the screens may introduce incor-
rect links in a similar way as some of the inference rules of Gaizauskas
and Setzer. How often this happens is an empirical question.

Also note that it is not trivial to translate back from Allen relations
to TimeML relations since there are four relations that are mapped
onto the = relation: identity, simultaneous, holds, and its inverse
held by. Now, which TimeML relation should be assigned to a relation
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type if the closure component generates a constraint on a temporal
link that includes Allen’s equal relation? The closure component is
separated as much as possible from the component that translates back
to TimeML relation types. The closure component reduces events and
timexes to intervals whose only characteristics are their begin and end
points. The choice of the TimeML relation type depends on factors
beyond the position of the events or timexes in the partial order of
time points: it depends on the types of intervals that are linked.

3.3. Embedding SputLink

SputLink’s closure algorithm does not run in a vacuum, it is embedded
in a mixed-initiative temporal annotation environment. This section
explores some of the issues about how the algorithm interacts with
other components and how the algorithm can be employed to achieve
consistency and (near) completeness.

There are basically two ways for the algorithm to be embedded: (i) as
a separate stage in the annotation and (ii) as a process that constantly
runs in the background.

In the first case, manual or automatic annotation occurs before any
activity from the temporal closure component, which runs in a sepa-
rate stage afterwards. This is the approach taken by (Setzer, 2001).
She also introduced a user-prompting stage where the user is asked
to fill in a relation type for a link that has none, this is followed by
another application of the closure component. The cycle continues till
all event/timex pairs are visited. Note that the first time that closure
runs, it may discover inconsistencies. So we have three stages of anno-
tation: (i) a phase of tlink-annotation by the annotator, (ii) a phase of
initial temporal closure, and (iii) a phase of interactive closure centered
around a user-prompting and closure loop. This three-phase approach
is presented graphically in figure 12.

initial
annotation

initial
closure

interactive
closure

phase 1 phase 2 phase 3

Figure 12. The three phases of annotation

In the second case, temporal closure runs each time a temporal rela-
tion gets added or further constrained. This has the advantage that the
annotation is guaranteed to be consistent at any time, but it may not
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always be possible to use this mode, for example, when some temporal
links are generated automatically in a pre-processing stage.

3.3.1. User-Prompting and Text-Segmented Closure
Closure by itself does not guarantee anything near completeness. Con-
sider the strategy where a manual annotation stage is followed by
application of the closure module. This strategy was used in the cre-
ation of the TimeBank corpus (Day et al., 2003). TimeBank annotators
typically markup only 1% of all possible temporal links and closure
ramps this up to just over 5%.

User-prompting as used by (Setzer, 2001) does guarantee complete-
ness. Yet this kind of user-prompting requires the annotator to fill in
relations between events that may be separated by large expanses of
text. The solution is to constrain user-prompting using text-segmented
closure. The basic idea is that we relax the requirement (or strong wish)
for completeness and settle for local completeness, which is defined
informally as follows:

(7) A locally complete temporal annotation of a document is an anno-
tation where each event is linked to all events and time expressions
within its local context and where each time expression is linked
to all events within its local context.

This relaxed completeness does not require the annotator to fill in
all the relations that the closure algorithm cannot derive axiomatically.
Instead, the only relations that the annotator would be prompted for
are relations between events and timexes that are adjacent in the text.
A segment is defined as a sequence of N time objects (events or time
expressions) or sentences, where sentence boundaries are defined by
punctuation markers. For example, a segment could consist of three
sentences. Segments overlap, that is, with three-sentence segments the
first segment of a document contains the first three sentences, the
second segment contains sentences two through four, and so forth.

The annotator in the prompting phase is faced with a sliding window
that moves down the text. The window starts out covering just the
first segment and the user is prompted for new relation types inside
this window. Each time the annotator adds a relation, temporal clo-
sure computes the consequences (including the non-local ones). The
cycle continues until all event and timex pairs in the first segment are
specified. Then the window will slip down one sentence. A benefit of
this is that the annotator always has easily available all she needs to
determine the relation type, no scrolling is required.
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It is interesting to compare the number of global links to the number
of local links. Table VI has a few example figures that illustrate the
difference between those numbers in a document.

Table VI. Number of global and local links

time objects segments global links local links

50 5 2500 500

100 10 10,000 1000

200 20 40,000 2000

The number of global links is bound to O(N2) whereas the number of
local links is bound to O(n2s), where N is the number of time objects in
a document, n the number of time objects in a segment and s the num-
ber of segments. This means that the number of local links is linear if
the segment size is fixed. By extension, temporal annotation using text-
segment closure is a linear task. As mentioned before, text-segmented
closure is not globally complete, only locally complete. But as we will
see later in this chapter, text-segmented closure with user-prompting
easily can derive more than 90% of all possible links.

Note, by the way, the distinction between the complexity of the
annotation task and the complexity of the closure algorithm. The first
task is linear, whereas the second is cubed to the number of time
objects. This seems like a fair division of labour.

4. SputLink and the Real World

In this section, I examine more closely the claims made about tem-
poral closure and show that temporal closure detects inconsistencies
and that, when coupled with user-prompting, it makes a near-complete
annotation feasible. More specifically, I will present data on (i) the
number of links added, (ii) the increase in average link span, (iii) the
number of inconsistencies detected in an annotated corpus, and (iv)
the impact of closure on inter-annotator agreement. In addition, I will
investigate how the user-prompting in text-segmented closure helps the
annotation task. Throughout this section, some fledgeling comparisons
with Setzer’s closure component are offered.

The data on number of links added and average link span in section
4.1 and the inter-annotator agreement figures in section 4.2 are all
relative to phases one and two of the annotation. The user-prompting
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evaluation results in section 4.3, on the other hand, also include phase
three.

4.1. Closing TimeBank

A wealth of TimeML data is available in the TimeBank corpus (Day
et al., 2003). TimeBank consists of 182 documents with 7962 events,
1422 timexes and 5681 tlinks. Applying closure to TimeBank delivers
solid statistics on numbers of links generated and the non-local nature
of tlinks after closure. It also provides examples of how temporal
closure identifies inconsistencies. In all sections except the section on
inconsistencies only a subset of the 182 TimeBank documents was used:
the 32 documents that contained inconsistencies were excluded from the
sample.

4.1.1. Links Added
A first obvious characteristic of a corpus after initial closure is that its
number of tlinks has increased. But what is always in the back of our
mind is the loftier goal of a complete or near-complete annotation. This
section explores how much initial closure gets us closer to that goal.

Table VII. Links added during the first two phases of TimeBank
annotation

links links/doc share density

added by initial annotation 4243 28.3 24.2% 1.28%

added by initial closure 13306 88.7 75.8% 4.02%

total 17549 117.0 100.0% 5.30%

Running initial temporal closure over TimeBank more than quadru-
ples the number of tlinks, as shown in table VII. The density column
deserves some explanation. It is convenient to have a measure that
reflects how complete an annotation is. Using recall for this purpose
has proven to be a tad confusing, so here I’ll use the term ’density’.
The density of an annotation is the percentage of tlinks relative to all
possible tlinks in the corpus. An annotation is complete if its density
is 100%. After closure, the density of TimeBank goes up from 1.28%
to 5.30% and closure ends up being responsible for almost 76% of all
links.

It needs to be said that the average density after initial closure
hides massive variation across documents, especially amongst smaller
documents. For example, the observed post-closure density for texts
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with less than 25 time objects ranges from 2% to 57%. The parameter
responsible for this variation is the size of the largest subgraph. Suppose
we have a graph with eight events and two ways of carving it up into
two subgraphs: [ {e1 e2 e3 e4} , {e5 e6 e7 e8} ] and [ {e1 e2 e3 e4
e5 e6 e7} , {e8} ]. Closure can never derive a link that connects two
subgraphs because there already needs be a path that connects the two
events or timexes, so the number of links derived by closure is bound by
the maximum number of links for the individual subgraphs. In the first
case, the maximum number of links is 6 + 6 = 12, in the second case it
is 21 + 0 = 21. In general, annotations with the largest subgraphs are
favored to derive more links by closure because the number of links is
quadratic to the number of time objects.

Table VIII. Density after initial closure relative to the
largest subgraph

ratio docs nodes/doc % derived density

0.00–0.25 53 35.9 67.1 2.5%

0.25–0.50 60 24.6 75.4 9.3%

0.50–0.75 34 24.1 85.1 19.2%

0.75–1.00 3 14.0 83.5 53.8%

The size of the largest subgraph is measured as the ratio of the size of
the subgraph and the total number of time objects. For example, if an
annotation graph has 28 events and timexes and the largest subgraph
contains 12 elements, then the ratio is 12/28 = 0.43. Table VIII shows
that indeed the size of the largest subgraph has a major impact on the
density after initial closure. And this impact cannot be explained by
adjusting for document size. This means that an annotation strategy
that maximizes the size of the largest subgraph is more likely to achieve
higher density with fewer user-added links. This issue will be taken up
again in section 4.3.

Andrea Setzer (2001) also provides some data on percentage of links
derived by closure. A comparison of Setzer’s data with SputLink is
given in table IX. For this table a subset of TimeBank was used;
only the 45 documents with sizes similar to Setzer’s document (that
is, between 15 and 25 time objects) were used.

It looks like there is no big difference in how many links are derived
by initial closure. However, a comparison is pretty much meaningless
given the very small size of Setzer’s sample and the observation made
previously that there is a large variation hidden in the averages.
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Table IX. Comparing Setzer’s closure module to SputLink.

docs links per document density

annotated derived % derived

Setzer 1 14.0 25.0 64.1% 20.5%

SputLink 45 25 12.6 24.6 66.2% 18.8%

4.1.2. Average Link Span
In this section I present statistics that show that temporal closure adds
non-local tlinks to the annotation and that these links were mostly
absent from the initial annotation. The annotators who marked-up
TimeBank seemed to converge on similar annotation strategies, linking
events to other events and timexes that were close in textual proximity.
Take for example the TimeBank fragment in (8) and the tlinks added
by the annotator in (9).5

(8) DCT: 02-27-98 0802ESTt25

Both U.S. and British officials filede12 objections to the court’s ju-
risdiction in 1995t23, claiminge13 Security Council resolutionse20

imposede14 on Libya to forcee15 the suspects’ extradition over-
rulede16 a 1971t24 Convention which gives Libya the right to try
the men.

(9) <TLINK event=e12 relatedToTime=t23 reltype=is included>
<TLINK event=e12 relatedToEvent=e13 reltype=is included>
<TLINK event=e20 relatedToEvent=e12 reltype=before>
<TLINK event=e14 relatedToEvent=e20 reltype=simultaneous>

The four tlinks shown are all the tlinks that the annotator added
for events and timexes in the sentence above, there were no tlinks
from events in this sentence to events elsewhere in the document. The
fragment exhibits two kinds of tlinks: a local anchoring of the filed
event to the time expression 1995 and three tlinks that establish local
orderings of events. What is interesting are the tlinks that are not
there. There are no global anchorings from events to time expressions
in other sentences and there is no ordering of events with events outside
the sentence. What we have here is a subgraph in the annotation with
the nodes {e12 e13 e14 e20 t23}.

The average link span is the textual span between the two events
or timexes that are linked; it is measured by the number of sentence

5 This fragment was taken from TimeBank article APW19980227-0476.
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boundaries that are crossed. A sentence is delimited by punctuation
and may include a main clause and an embedded clause. If all tlinks
are intra-sentential, as in the example above, then the average link span
is 0; if all tlinks cross one sentence boundary, then the average link
span is 1. Table X has the links spans for TimeBank.

Table X. Link spans for Time-
Bank

link span

before closure 2.42 (0.88)

after closure 6.89

baseline 13.35

The baseline is the average link span if all links were annotated,
that is, a complete TimeBank annotation would have an average link
span of just over 13. For TimeBank, the average link span after initial
annotation is 2.42. The number between brackets reflect the average
link span when all links to the document creation time (DCT) are
taken out. For TimeBank, taking out the DCT makes a big difference:
2.42 vs. 0.88. This means that most cross-sentence links involve global
anchoring to the DCT and that there is no significant global anchoring
to other time expressions and no significant global ordering of events.

After initial closure, the link span goes up from 2.42 to 6.89. This
figure reveals that initial temporal closure adds a whole group of non-
local links that are systematically missed by the annotators. Average
link span of non-DCT links before closure does not vary a lot across
document sizes, but after closure it is higher for larger documents.

4.1.3. Inconsistencies
An inconsistency occurs when the relation type r1 of a tlink 〈x r1 y〉
clashes with the relation type r2 of a tlink 〈x r2 y〉, where r1 6= r2 and
〈x r2 y〉 is derived by closure from 〈x r3 q〉 and 〈q r4 y〉. An example
from TimeBank6 is displayed in figure 13.

One of the motivations for temporal closure is that it can catch
inconsistencies like the one in 13 where two tlinks, one added by
initial annotation and one added by initial closure, are incompatible.
The dotted line represents a tlink 〈e81 < t212〉, which was derived
by closure from 〈e81 < e85〉 and 〈e85 = t212〉. Clearly, 〈e81 < t212〉
clashes with 〈e81 d t212〉, an event cannot be both during and before

6 Source: TimeBank document NYT19980206.0460.
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e81: "creating"e85: "averaging"

t212: "the first nine months"

= d

>

>

After accounting for a small downward revision Friday to
December’s figures, the economy has been creatinge81 jobs at
a rate of 358,000 a month for the last four months and over
381,000 over the last three months after averaginge85 242,000 for
the first nine monthst212 of 1997.

Figure 13. Example inconsistency from initial TimeBank annotation.

a certain time period. In this particular case, the annotator decided
that ”averaging” and ”the first nine months” are simultaneous, but
then continued stating that ”creating” is both after one and during the
other.

All TimeBank articles were checked for inconsistencies using SputLink.
There were 32 documents with an inconsistency. Manual inspection
showed that all inconsistencies could be reduced to three annotator-
added tlinks between three time objects. About half the inconsisten-
cies were intra-sentential, the others crossed 1 to 20 sentence bound-
aries, with the vast majority only crossing one or two sentences. Those
spanning more than 2 sentences almost always included the document
creation time.

SputLink can obviously help resolve the inconsistencies and thereby
increase the number of correct tlinks by 32 and marginally improve
tlink-precision7, which, given the 5681 tlinks in TimeBank, would
increase by 0.56%.

The number of 32 inconsistencies is small considering the size of
TimeBank. But a couple of small-scale experiments with an early ver-
sion of SputLink8 have shown that more inconsistencies can pop up
in the user-prompting phase, when the annotators are asked to reflect
on temporal relations that are much less clear than those that they
volunteer in an initial round of markup. This particular experiment
showed that about 4-5 inconsistencies are generated during the user-

7 Precision is defined in (10) in the next section.
8 This version did not use a complete composition table and allowed inconsisten-

cies to be generated during the user-prompting phase.
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prompting stage of a document with about 40 time objects. This has
not been quantified thoroughly though.

4.2. Inter-Annotator Agreement

Inter-annotator agreement (IAA) gives a hint as to how well-defined an
annotation task is: low IAA indicates an ill-defined task. However, as
noted in section 1, a comparison of two TimeML annotations needs to
take into account that two annotations can be syntactically different
yet semantically the same. Temporal closure maps identical semantic
annotations onto identical syntactic annotations and therefore has the
potential to increase IAA scores, as was claimed previously by (Katz
and Arosio, 2001) and (Setzer, 2001).

To calculate IAA, I adopt (Setzer, 2001), who, following (Hirschman
et al., 1998), used pairwise comparisons of precision and recall figures.9

For each text, one annotator is taken as the key and standard precision
and recall, as defined in (10), are calculated with the other annotator
as the response. Then annotators swap their key and response status
and P&R are calculated again. Finally, we average over the two sets of
data.

(10) Precision = matches in response
entities in response × 100

Recall = matches in response
entities in key × 100

The IAA data in this section are obtained from an experiment at
Brandeis University. Eighteen documents10 were each annotated by two
people using the Alembic Workbench. The annotators had no prior
exposure to Alembic and had no background in linguistics. They each
received about two hours of training. Of the eighteen documents, ten
were taken out of the sample because closure generated inconsistencies
or because one of the two annotators did not add any tlinks at all.
The IAA measures before and after closure are in table XI. The time
objects column contains the IAA for the presence of an event or timex
at some text extent. This is rather liberal, because it is considered a
match when the same extent is annotated as an event by one annotator
and as a timex by the other. The links column is similar to the time

9 An older standard measure to measure inter-rater agreement is the Kappa
coefficient, which adjusts for the number of agreements that would have occurred by
chance. This coefficient though is not well suited for annotation tasks that cannot
be construed as a pure classification task.

10 These documents were not from TimeBank but they were taken from the same
domain.

closure.tex; 10/01/2005; 1:03; p.25



26 Marc Verhagen

objects column and reflects whether two text extents were connected
by a tlink by the two annotators. The relations column is sensitive to
the relation type of the two tlinks: a match requires the two relation
types to be the same. The first percentage inside the links and relations
columns reflects the IAA after the initial annotation phase, the second
percentage the IAA after the initial closure.

Table XI. IAA scores for 8 documents

document inter-annotator agreement

time objects links relations

AP900822-0016 87.1% 25.8% 27.1% 17.8% 20.3%

APW19980428.0729 83.1% 35.9% 42.9% 14.4% 8.6%

APW19980510.0720 78.9% 24.1% 16.7% 16.1% 10.9%

CNN19980104.1600.0033 68.6% 8.7% 14.7% 0.0% 2.9%

NYT19980212.0025 66.7% 16.1% 10.9% 6.4% 4.4%

PRI19980218.2000.0431 80.9% 0.0% 0.0% 0.0% 0.0%

SJMN91-06338157 79.5% 31.6% 36.3% 6.3% 16.1%

WSJ910627-0102 75.5% 20.6% 20.4% 8.6% 13.3%

As expected, inter-annotator agreement before closure is low, vary-
ing from 0% to 36%, with the average hovering around 20%. There
is also considerable disagreement amongst annotators on the relation
type. There were 104 instances where two annotators created a tlink
connecting the same text objects, but in only 50 of those the annota-
tors added the same relation type attribute. IAA for relation type on
average is about 9%, and about 48% if links that do not occur in both
annotations are ignored.

What was not expected is that initial temporal closure has no obvi-
ous effect on inter-annotator agreement: it goes up for some documents
but down for others. It may be unintuitive that temporal closure can
actually lower inter-annotator agreement, especially given the assertion
that temporal closure maps semantically identical but syntactically
different annotations to syntactically identical annotations. Consider
figure 14 for an example of how closure can reduce IAA. The solid
arrows are tlinks added in the initial annotation phase. The two an-
notations have one tlink in common and differ on the other: IAA is
50%. Now enter the dotted line which represents a third tlink added
after initial closure. IAA is now down to 33%. In general, closure can
generate both tlinks that raise IAA and tlinks that push down IAA
and there are many annotation configurations where the latter is more
prevalent than the former.
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Figure 14. Example of how closure can reduce IAA

So there is no evidence that initial temporal closure has a positive
(or negative) influence on IAA. This is contrary to results from (Katz
and Arosio, 2001) who reported that annotations were syntactically
identical in 70% of the case and semantically identical in 85% of the
cases. It is not clear however whether they measured the same thing as
I’m measuring here: (Katz and Arosio, 2001) only looked at annotation
within a sentence and used a very small set of temporal relations. A
comparison with (Setzer, 2001) is not possible because she does not
provide IAA figures after temporal closure. It should also be noted
that the Brandeis experiment was performed by a very diverse group
of naive, unpaid and possibly unmotivated annotators. A larger-scale
experiment with less naive annotators is sorely needed.

But even given these tentative results, we can still speculate with
good cause that IAA scores will go up when two annotations both have
a sufficiently high density. In that case the IAA figures in the links
column have no choice but going up, with the numbers in the relations
column probably following in their wake.

4.3. Text-Segmented Closure

Initial closure does not provide a complete annotation: only one in
twenty potential links in TimeBank are made available after initial
closure. The data in this section concentrate on phase three of the
annotation: the interactive closure with user-prompting. I will show
that a near-complete annotation can be obtained in linear time without
having to ask the annotator to supply non-local temporal relations.

Some of the data in this section are derived using a human annotator
actually answering the prompting. But the vast majority of data was
collected using a simulation. In this simulation, an added component
to SputLink stands in for the user and provides the relation type. This
relation type is generated randomly, but relative weights were used
to model the observation that some relations are more frequent than
others. Relation type distribution data from TimeBank provided the
relative frequencies of TimeML relations. The only exception was the
unknown relation, which was added to TimeML predominantly to allow
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for underspecification in the prompting phase. Distribution data for this
relation type were gleaned from the manual prompting experiments,
which indicated that about 24% of user prompts result in the addition
of an unknown relation type.

The simulation was set up because there were not nearly enough data
to make any significant comparative statements. Properly evaluating
the claims about text-segmented closure, the optimal segment size and
the optimal prompting strategy would require a large-scale annotation
fest with a medium-sized group of annotators (about 5-10) annotating
a range of articles using an array of different user-prompting setups.
There were simply not enough resources to do this and the next best
option was to set up a simulation, with some human assisted closure as
a sanity check. Using a simulation is acceptable in the present case be-
cause, unlike with for example inter-annotator agreement or precision,
the data that I’m trying to generate here are quantitative, that is, I’m
interested in how many tlinks are derived, not what tlinks.

Consider the data in table XII, which was filled using a simulation of
user-prompting with a segment size of 3 sentences where the segments
always included the document creation time.

Table XII. Number of tlinks derived with simulated
user-prompting

links/doc share density

phase 1 annotated links 22.1 2.8% 2.6%

phase 2 initial closure 60.7 7.6% 7.1%

phase 3 prompted links 23.8 3.0% 2.8%

interactive closure 695.0 86.7% 81.7%

total 801.6 100.1% 94.2%

As you can see, initial and interactive closure together derive a little
over 94% of all tlinks, which is significantly higher than the 76% share
of derived tlinks after phase 2 (cf. table VII). This particular local
prompting setup delivers a global density of just over 94%. Note that
all that’s needed to achieve a density of 94% is an average of about 22
+ 24 = 46 user-specified tlinks per document. The massive variation
in density we saw before user-prompting is not observed here. About
95% of all documents have densities over 80%, 44% have densities over
98% and 20% have a density of 100%.

Let’s compare the figures in table XII to the prompting statistics
reported by (Setzer, 2001). She gives closure figures for six newswire
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articles from the New York Times from 1996. The comparison is in
table XIII.

Table XIII. Comparison of user-prompting stages

Setzer SputLink

links/doc share links/doc share

annotated 18.5 4.0% 22.1 2.8%

prompted 63.5 13.8% 23.8 3.0%

derived 387.3 82.2% 755.7 94.2%

total 469.3 100.0% 801.6 100.0%

The difference in link-generating capacity of the two closure engines
(82% versus 94%) may tentatively be explained as follows:

1. SputLink has a bigger rule base. Setzer uses an incomplete set of 10
inference rules, SputLink employs a complete relation composition
table with 638 entries.

2. The smaller sample size of Setzer’s corpus results in a higher vari-
ation of closure percentage, potentially skewing the results. For
example, one of Setzer’s articles only had 67.4% of links derived by
closure. Individual data for the other files were not available.

3. Density is 100% for Setzer and 94.2% for SputLink. The last 6%
may have taken more prompting-cycles to complete.

4. The simulation skews the results.

The next section on optimal segment size makes it clear that ex-
planation number three is not correct. As for the possibility that the
simulation skews the results: manual experiments do indeed suggest
that the simulation slightly underreports the number of prompts needed
to achieve a certain density, but this is not nearly enough to explain
the difference between the link-generating capacity of Setzer’s closure
algorithm and SputLink.

4.3.1. Optimal Segment Size
Two of the parameters that need to be set for text-segmented closure
are the segment size unit and the number of units in a segment. There
are two obvious choices for the unit: the sentence and the event or
timex. The sentence is here again understood as a text extent between
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two punctuation markers. An additional question is whether the docu-
ment creation time (which is a bit like a global time expression) should
be included in the segment or not. There is always going to be a trade-
off between effort (number of prompts) and result (density), but the
ultimate goal is to get a high enough density with a number of user
prompts that is feasible for human annotation.

Table XIV. Prompting simulation results for sentence segments

Number of sentences in segment

1 2 3 4 5 6 7 8 9

with DCT

density in % 77.5 90.4 94.3 95.3 97.5 98.2 98.4 98.4 99.2

prompts/doc 17.5 21.9 23.2 24.8 25.9 28.8 26.2 26.2 26.4

without DCT

density in % 28.9 75.7 90.2 95.4 97.4 97.5 98.4 98.4 98.7

prompts/doc 13.7 21.4 24.0 24.4 25.5 26.2 26.7 26.3 26.3

Table XIV shows how link density and number of prompts are re-
lated when the sentence is the unit of measurement. The top half of the
table presents the figures when the DCT is included in each segment;
for the bottom half the DCT is left out of all segments. The data in
this table support two significant observations:

1. All that’s needed to achieve near-completeness of TimeBank is
about 25 to 30 user prompts per document. Not shown in the table
are the numbers for individual documents. Not surprisingly, the
amount of prompts is higher for larger documents. But the num-
ber of prompts was lower than the number of time objects for all
documents which suggests that user prompting in text-segmented
closure is linear relative to the document size.

2. Local prompting within a window of three to four sentences sup-
ports a density in the mid nineties. This is a nice result because
it means that text-segmented closure does not need to degrade to
large segments if high density is required. So prompting can re-
main essentially local. The table also shows that allowing restricted
global prompting by including the DCT gives much better results
for the smaller segments. This effect evaporates when the segments
are larger than three sentences.
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This picture does not change when we take segment sizes to be deter-
mined by number of nodes (events and timexes) rather than sentences,
as displayed in table XV. Using the node as the unit is in some sense
more pure because it will not allow extremely long or short sentences
to skew the results. That this indeed happens with sentence-sized seg-
ments becomes clear when we look at the range of measurements for
individual files. For example, the average density when the segment size
is three sentences (with the DCT included) is 94.3%, but this hides the
fact that there are considerable variations. Sixteen of the documents
had a density below 90%, six below 80%, and one had a density of 17%.
If the segment size is set to ten nodes then the spread is much smaller:
seven documents with density below 90%, two below 80%, and none
below 65%. To frame this in more standard statistical terms we can use
the standard deviation σ which indicates how tightly measurements are
clustered around the mean and which is defined as

σ =

√∑
(x− µ)2

n

where µ is the mean and n is the number of measurements. The stan-
dard deviation for the three-sentence segments is 12.2, for the ten-node
segments it is 5.1.

Table XV. Prompting simulation results for node segments

Number of nodes in segment

1 2 3 4 5 7 10 15 20

with DCT

density in % 62.3 77.4 83.5 86.2 89.3 92.5 94.6 96.7 97.8

prompts/doc 11.8 18.3 19.6 21.1 22.0 23.2 24.8 28.8 26.3

without DCT

density in % 9.7 35.8 57.9 74.3 79.3 90.5 95.1 97.2 97.8

prompts/doc 0.0 16.9 19.6 20.9 22.2 23.4 24.5 25.5 26.1

I already discussed that table XIV shows that user-prompting is lin-
ear to the document size in time objects. In the early days of SputLink
there was some concern that global user prompting was potentially
quadratic to the size of the document because the number of potential
links is quadratic to document size. If this were true then the number of
prompts per document would go up much faster then actually happens
in tables XIV and XV. What we see instead is that density and number

closure.tex; 10/01/2005; 1:03; p.31



32 Marc Verhagen

of prompts go up pretty much evenly and that the relation is quite
linear. And indeed, setting the segment size to infinity results in 100%
density with only 27.1 prompts per document. The documents used for
this simulation did not show any outliers, in other words, the worst-
case scenario of quadratic user-prompting did not occur in any of the
documents. Figure 15 illustrates the linearity of the relation between
prompts and density.

Figure 15. The relation between number of prompts and density

So the simulation results do not display the worst-case scenario of
quadratic user-prompting. This was corroborated by a couple of man-
ual experiments where the segment size was set to infinity and where
the annotator was not abused with quadratic user-prompting at all.
This result can be explained by the fact that when the density of an
annotation increases then the chance that there is a path between any
two nodes X and Y also increases. And if there is a path between X
and Y, then closure is often able to draw a tlink directly from X to Y.

All in all, text-segmented closure has proven to be a viable approach
to the interactive closure phase of the annotation effort. It provides for
near complete annotations with a linear annotation effort while only
prompting the user for local temporal relations, which simplifies the
annotation task.
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5. Conclusion

A temporal closure component can greatly enhance temporal anno-
tation. I introduced SputLink, a temporal closure component based
on James Allen’s interval algebra and embedded in an annotation en-
vironment. I have shown that SputLink increases the density of an
annotation and helps reduce the locality of manual annotation, that is,
closure generates temporal relations between events that are not close
to each other in the document.

With closure, it is possible to ensure consistency and much eas-
ier to achieve near completeness. Densities of over 90% are possible
with interactive closure and user-prompting. Experiments showed that
temporal annotation is a task that is linear to the size of the docu-
ment. Text-segmented closure simplifies the annotation process in the
sense that the annotator will never be required to specify temporal
relations between events that are not close in textual proximity. Yet
text-segmented closure does not have a large negative impact on the
annotation density.

The main goal in any annotation strategy should be to create a fully
connected annotation graph. Running closure over a fully connected
graph generates the largest number of inferences. Text-segmented clo-
sure is able to achieve that connectedness.
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